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Abstract— In an industry field, the acoustic characteristics 

such as a resonance frequency and an acoustic damping ratio 

are often required. The response test due to a random noise 

wave and the sweep test due to a sinusoidal wave can be 

performed in those cases. In vibration theory, it is well known 

that the peak value at resonance is inversely proportional to the 

damping ratio. Is it true even in the acoustic theory? If it can be 

true the acoustic damping ratio can be obtained simply by the 

peak sound pressure level after the relation between the peak 

value and the damping ratio is examined only once. In this 

study, the sound pressure level of the one dimensional duct with 

the perforated plate will be calculated by the transfer matrix 

method in various parameters such as the aperture ratio, the 

hole’s length and the set position of the plate. These calculations 

are conducted for the first mode, the second mode and third 

mode. And the relation between the peak value and the 

damping ratio are examined. 

 

Index Terms— Acoustic characteristics, Damping ratio, 

Resonance frequency, Transfer matrix method, Perforated 

plate  

I. INTRODUCTION 

A perforated plate is widely used as an acoustic absorption 

material for compressors [1] and acoustic barriers for roads 

and railways[2]. It has been confirmed that the perforated 

plate suppressed the self- sustained tone generated from heat 

exchangers like a boiler by using it on a duct wall[3]～[6]. 

The effects of the perforated plate on the acoustic natural 

frequency of an one dimensional sound field partitioned with 

the perforated plate has been studied in our previous 

investigations [7],[8]. It was clarified that the acoustic 

natural frequency of the one dimensional sound field 

partitioned with the perforated plate becomes lower as the 

aperture ratio becomes smaller. The acoustic characteristics 

such as a resonant frequency and an acoustic damping ratio 

of an one dimensional sound field like a duct has often been 

required. In that case, the random excitation or the sine wave 

sweep test has been performed to obtain the acoustic 

characteristics. 

 By the way, we have a question that whether the response 

value at resonance is inversely proportional to the acoustic  

damping ratio similar to the vibration theory or not. On the 

other hand, we have the thought it is natural. But it is not 

clear in the present stage. If it is possible, the peak value of 

the sound pressure level at resonance can be obtained easily 

without obtaining the acoustic damping ratio which is hard to 

obtain.  
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Then, in this study, the sound pressure level is calculated 

for each parameter of the perforated plate such as the 

aperture ratio, hole’s length and the setting position in the 

duct and the peak value and acoustic damping ratio for 1
st
 , 

2
nd

 and 3
rd

 modes are obtained by the analysis. The relation 

between the peak value and the acoustic damping will be 

examined. The analysis is performed by using the Transfer 

Matrix Method and Melling’s results[9],[10]. 

II. ANALYTICAL METHOUD 

Figure1 shows an analytical model of the duct with a 

perforated plate. The numbers show the varying points of the 

cross section of the duct and the perforated plate position. 

Indicating the state vector at each numbering position as 

 (i=1～4), the equation (1) can be obtained as the 

relation between both state vectors of first and terminal 

positions. Where Pi, Ui  are the sound pressure and the 

volume velocity respectively. 

 

 
   

 

Fig.1 Analytical model of 1D duct 
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Given the unit forced displacement at the left end of the 

duct and the boundary condition of the right end is given as 

follows because the right end of the duct is closed. 

 

U1=1,  U4=0                 (2)  

                                              

And the center matrix of the equation (1) which relates the 

state vectors of before and behind the perforated plate can be 

given as follows. 

 Tii UP

Relation between peak value and acoustic damping of 

sound pressure level of one dimensional sound field 

partitioned with perforated plates 

Kunihiko ISHIHARA, Akari GOTO, Makoto KASHINO
 

1          2  3                          4 

l1     l3        l2 

Perforated plate 



 

Relation between peak value and acoustic damping of sound pressure level of one dimensional sound field partitioned 

with perforated plates 

                                                                                                   2                                                                           www.ijeas.org 

 

  [
1 ZR+𝑗Zi
0 1

]  Where Z=z/S         (3)  

                            

Here Melling’s equation (4) is used as the acoustic 

impedance before and behind the perforated plate. 

 

𝑧 = (2𝜇𝑙3/𝑟0)√𝜔𝜌/2𝜇(1 + 𝑗) + 𝑗𝜔𝜌𝑙3 
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As a result, A11～A22 of equation (1) become as follows. 

A11= cos k𝑙2 cos k𝑙1 −
Zi
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A12 = ZRcos k𝑙2 cos kl1 
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The equation (5) can be obtained as the sound pressure P4 of 

the right end of the duct by using these equations. 

 

  P4=
-A11A22+A12A21

A21
                                  (5)                                          

The sound pressures were calculated for the aperture ratios 

1%, 4% and 16%. And calculated for the hole’ length l3 of 

0.0023m, 0.0046m, 0.1m and 0.2m for each aperture ratio. 

Moreover we calculated the sound pressures for three 

perforated plate positions (1) l1=0.334m, l2=0.5m, (2) 

l1=0.434m, l2=0.4m, (3) l1=0.634m, l2=0.2m for three 

aperture ratios and four the perforated plate positions. ro is 

used the radius that makes a circle of the same area as the 

entire holes area. Namely r0=√(0.2m×0.2m×φ)/π. This 

treatment should be noticed not to be able to obtain the 

correct acoustic damping ratio and this treatment is only used 

to clarify the relationship between the peak sound pressure 

and the acoustic damping ratio. The frequency resolution is 

10Hz. 

III. ANALYTICAL RESULTS  

ⅰ FREQUENCY RESPONSES 

Figure2～Figure4 show the frequency responses of P4 

(Right end pressure) for three perforated plate positions (1) , 

(2) and (3) described above. The left figures show the 

frequency responses for the aperture ratio φ=1% and right 

figures for φ =16%. Notification 334*500 shows the 

perforated plate position and this indicates the perforated 

plate is set at the position of 334mm from the left end of the 

duct. Sum of two numbers is 834mm constant and it is the 

total length of the duct. 

 

 

ⅱ ACOUSTIC DAMPING RATIO 

It is well known in the vibration theory that the peak value 

at resonance is inversely proportional to the damping ratio. Is 

it true in the acoustic field like the one dimensional duct 

examined here? We think that it is difficult to answer the 

question immediately. Then the acoustic damping ratio is 

obtained by using the half power method. The equation of 

half power method is given as follows.  

 

ζ = ⊿f/2 / fn                               (6)  

                                                                              

Where ⊿f is frequency difference of f1 and f2 (⊿f= 

f2-f1 )and these are the frequencies at which the 3dB lower 

than the peak value. fn is the natural acoustic frequency. 

Suffix n indicates mode order . 

 

 

 
 

Fig.2 Frequency responses for duct of 343*500 

 

 
 

 
Fig.3 Frequency responses for duct of 443*400 
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Fig.4 Frequency responses for duct of 643*200 

 

Then the calculations were performed by varying ⊿f  as 

best suited to the acoustic damping to be able to catch the 

each mode peak value. The calculation results of acoustic 

damping are shown in table1 to table6. These are the results 

in the case of the perforated plate position of 434*400. 

Table1 and 2 show the results from the peaks of 1
st
 mode, 

Table 3 and 4 from the peaks of 2
nd

 mode and Table 5 and 6 

from the peaks of 3
rd

 mode. The odd number of the table 

show the case of φ=0.01 and the even number of the table 

show the case ofφ=0.16. Whereφis the aperture ratio. The 

values of right column ( hatching ) show the product of the 

sound pressure p and the acoustic dampingζ. From these 

tables, the product value is about 3277for 1
st
 mode regardless 

of the perforated plate positions and hole’s length. And 1570 

for 2
nd

 mode, 1094 for 3
rd

 mode respectively. These values 

are mean values of four values for L3. It can be said that the 

peak sound pressure p is inversely proportional to the 

acoustic damping ζand the product value of p andζfor 

each mode is inversely proportional to the mode order. 

 

Table 1 434*400, φ=0.01, 1
st
 mode 

 
 

Table 2 434*400, φ=0.16, 1
st
 mode 

 
 

Table 3 434*400, φ=0.01, 2
nd

 
t
 mode 

 
 

Table 4 434*400, φ=0.16, 2
nd

 mode 

 
 

Table 5 434*400, φ=0.01, 3
rd

  mode 

 
 

Table 6 434*400, φ=0.16, 3
rd

  mode 

 
 

IV. PHYSICAL NUDERSTANDING DUE TO 

EQUATION 

Consider the lateral vibration of a bar which is equivalent 

to the acoustic phenomenon of an one dimensional sound 

field like the duct. The equation of motion without damping 

can be described by the equation (7).  

 

 

-ρA
∂

2
u

∂t2
+AE

∂
2
u

∂x2
=0               (7) 

                                  

Where u is the displacement. 

 

Consider the viscous coefficient c (N・s/m
3
) per unit area on 

this equation, we got the next equation. 

 

-ρA
∂

2
u

∂t2
-cA

∂u

∂t
+AE

∂
2
u

∂x2
=0             (8)  
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Dividing both sides by ρA 

 
∂

2
u
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E
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2
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c

ρ
 

 

Here putting a2=
E

ρ
  

 
∂

2
u

∂t2
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∂u

∂t
-a2 ∂

2
u
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=0                       (9)  

                                   

Putting ui(x,t)=φi(x)∙q
i
(t) （i：mode order）and substituting 

this to the equation (9) 

 

φi

d
2
qi

dt2
+γφi

dqi

dt
-a2 d

2φi

dx2
∙q
i
=0              (10)      

                                                      

Multiplying φj  (Mode function) to both sides and integrating 

0 ～ l, We got the next equation. 

 

  ∫ φ
i
φ
j
∙dx

d
2
qi

dt2

l

0
+γ∫ φ

i
φ
j
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l

0
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From the orthogonality of the mode,  ∫ φ
i
φ
j
∙dx

l

0
= {

𝑖 ≠ 𝑗 0
𝑖 = 𝑗 𝐴

                  

(11)                                 

And performing the partial integration and considering the 

boundary conditions φi(0)=φj(l)=0 

 

∫
d
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dx2
∙φ
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l
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dφi

dx
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Then 

Ai

d
2
qi

dt2
+γAi

dqi

dt
+a2𝐵i∙qi=0  

d
2
qi

dt2
+γ

dqi

dt
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Where putting a2 Bi

Ai
=ωi

2 , γ=2ζ
i
ωi  

 

d
2
qi

dt2
+2ζ

i
ωi

dqi

dt
+ωi

2∙q
i
=0  

 

We can obtain the equation of motion for one degree of 

freedom vibration system. The solution of the forced 

vibration in the case of given the steady external force to the 

right hand side becomes as follows.        

                                                                 

q
i
=

fi/miωi
2

√(1−ui
2)2+(2ζiui)

2
                                                   (13)   

                                                                 

Where  f
i
=∫ F∙φ

i
dx

l

0
             

                                                              

The steady state solution can be obtained as follows. 

 

ui(x,t)=φi(x)∙q
i
(t)                                                  (14)  

                                                            

From the above theoretical development, the damping 

ratio ζ
i
 of mode i is inversely proportional to the natural 

circular frequency  ωi  due to γ=2ζ
i
ωi  when γ is constant. 

And the damping ratio becomes inversely proportional to the 

mode order as the natural frequency is proportional to the 

mode order . This is coincident with the result derived from 

the calculation result. As a result, it was reasonable that the 

damping to the one dimensional sound field partitioned with 

the perforated plate can be given like the equation (8). 

The mode orthogonality as shown in the equation (11) is 

even true for the case of one dimensional sound field 

partitioned with the perforated plate. Figure5 (a) and (b) are 

1
st
 mode and 2

nd
 mode shapes of the pressure obtained by the 

reference [6] respectively. The horizontal axis shows the 

position from the origin and the vertical axis shows the 

normalized sound pressure. The length of this duct is 500mm. 

It can be seen from this figure that the sound pressure 

suddenly drops at the position of the perforated plate. 

 

 

 
 

Fig.5 1
st
 and 2

nd
  modes of sound pressure 

 

The result calculated by the equation (5) shows that the 

value in the case of i=j is 1/100 order smaller than that in the 

case of i=j.  Namely the orthogonal condition is true for this 

case. 

 

Table7 Verification of orthogonality condition 
 

 

V.   CONCLUSIONS 

In this paper, theoretical analysis was conducted to clarify 

the relation between the peak sound pressure level at 

resonance and the acoustic damping ratio. In general, the 

peak value at resonance is inversely proportional to the 

damping ratio in the vibration theory. This is the purpose to 

confirm that the peak value at resonance is inversely 

proportional to the damping ratio in also acoustic fields. We 

got the following findings from the theoretical consideration, 

 

(1) The pressure at resonance is inversely proportional to the 

acoustic damping ratio in even acoustic fields. 

Position of the perforated plate 
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(2) It is true that the mode order bear an inverse relation to 

the acoustic damping ratio. 
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